Cone Cylinder

Q6 a ii):

Using Formulae
The cone volume formula is $\quad V_{\text {cone }}=\pi r^{2} \frac{h}{3}, \quad$ where h is the hight.
In this question $V_{\text {cone }}=\pi r^{2} \frac{2 x}{3}$.
The volume of the cylendar at the bottom $V_{c y l}=\pi r^{2} x$.
$\because r^{2}=20^{2}-(2 x)^{2}=400-4 x^{2}$.
\therefore the total volume $V=V_{\text {cone }}+V_{c y l}=\pi r^{2} \frac{2 x}{3}+\pi r^{2} x=\pi r^{2} x\left(\frac{2}{3}+1\right)$

$$
=\frac{5}{3} \pi\left(400-4 x^{2}\right) x=\frac{20}{3} \pi\left(100 x-x^{3}\right)
$$

Using Integration

In fact, the volume formulae are derived using integration anyway, so you may go straight to treat it as a graph and integrate to find the volume of the solid formed by rotating the graph about the x -axis.

Let us use the same diagram we drew in the lesson, with u as the horizontal axis, and R as the radius at u. $\frac{R}{u}=\frac{r}{2 x}, \quad$ so $\quad R=\frac{r u}{2 x} . \quad R^{2}=\frac{r^{2}}{(2 x)^{2}} u^{2} . \quad(r$ and x are constants. Only u is varying here. $)$
$V=\int_{0}^{2 x} \pi R^{2} d u+\int_{2 x}^{3 x} \pi r^{2} d u$
$=\int_{0}^{2 x} \pi \frac{r^{2}}{(2 x)^{2}} u^{2} d u+\pi r^{2} \int_{2 x}^{3 x} d u$
$=\pi \frac{r^{2}}{(2 x)^{2}} \int_{0}^{2 x} u^{2} d u+\pi r^{2} \int_{2 x}^{3 x} d u$
$=\pi r^{2}\left(\frac{1}{(2 x)^{2}}\left[\frac{u^{3}}{3}\right]_{0}^{2 x}+[u]_{2 x}^{3 x}\right)$
$=\pi r^{2}\left(\frac{1}{(2 x)^{2}}\left[\frac{(2 x)^{3}}{3}\right]+[3 x-2 x]\right)$
$=\pi r^{2}\left(\frac{2 x}{3}+x\right)$
$=\frac{5}{3} \pi r^{2} x$
$=\frac{5}{3} \pi\left(400-4 x^{2}\right) x$
$=\frac{20}{3} \pi\left(100 x-x^{3}\right)$.

